

Data Sheet

Rish CON TPT

Programmable Tap position transducer

Application

The purpose of the Tap position transducer is to convert tap position of transformers to equivalent analogue output. Outputs can be given as input to either RTU or indicator or recording instrument.

Input variable and measuring range are programmed with the aid of a PC and the configuration software.

The device has one input channel and two independent out puts.

Features / Benefits

- Input measuring range can be programmed using PC / Simplifies project planning and engineering (the final range can be determined during commissioning).
- 2. Electrically isolated Dual out puts.
- 3. Tap number is programmable from 1 to 100 using software.
- 4. Tap position is displayed on front LED display.
- 5. Analogue output signal also programmed using the PC (impressed current or superimposed voltage for all ranges between 20 and + 20 mA DC resp. 12 and + 15 V DC)
- Galvanic and optical isolation between Power supply, Input and outputs
- 3,4 wire measurement to compensate lead resistance automatically.
- 8. 2 wire measurement with lead resistance compensation through software.

Function

Tap position transducers receives resistance input, which corresponds to tap position of transformer. Out put is proportional to tap position.

Electric Isolation

- Electrically isolated analog outputs prevent interference voltage and current. Solves grounding problem in meshed signal networks.
- High electric isolation between input and output 2.3 kV, and power supply versus all other circuits – 3.7 kV.

Standards

Electromagnetic compatibility

Acc. to IEC 61326-1
IEC 61000-4-3, Level 3
IEC 61000-4-4, Level 3

Protection (acc. to IEC 60529

resp EN 60 529)

Test Voltage

For Housing: IP40
For terminals: IP20 as per

IEC60529

Electrical standards Acc. to IEC 1010 resp. EN

61010

Over voltage category Acc. to IEC 664:

III for power supply.
II for measuring input and

measuring output.

Double Insulation - Power supply versus all

other circuit.

 Measuring input versus measuring output.
 Power supply versus:
 -All 3.7 kV, 50 Hz 1 min Measuring inputs versus:

-Measuring output 2.3 KV ,50 Hz 1min Measuring output1 versus

-Measuring output2 500 V,50 Hz 1min

Common mode voltage 100V

Pollution degree 2

Technical Data

Measuring Input -

Measured Variable	Measuring ranges		
	Limits	Min. span	Max. span
Low Resistance Range	03700 🗆	500 🗆	3700 🗆
High Resistance Range	025000 🗆	500 🗆	25000 🗆

Measuring current : = 0.081 mA for measuring range

0...3700□.

or

= 0.012 mA for measuring range

0...25000 ...

Output Signals: Output1 and Output 2

DC current: Standard ranges: 0-20 mA or

4 – 20 mA

Non-standard ranges: -20 to +20 mA

Min. Span 5 mA Max Span 40 mA Negative > -19 V

Burden voltage: Negative > -19 V
Positive < 22 V

External Resistance Rext max, $[k\Omega] = 15V/IAN (mA)$ OR

-12V / IAN (mÅ)

DC Voltages IAN (mA) =Full scale current
Standard ranges: 0-5V, 1-5V,

5 voltages Standard ranges: 0-5v

0-10 V, 2-10 V

External Resistance Rext min. $[k\Omega] = UA (V)/20 \text{ mA}$

UA (V)= 15V or -12V

Residual ripple in

Output current < 0.5% p.p. Response time < 4 s

Power supply: 60 ... 230...300 VAC/VDC

(45...66 Hz) OR

24...<u>48</u>...60 V VAC/VDC

(45...66 Hz)

Power consumption: <3W or <4.7 VA

Mounting: DIN Rail mounting or wall mounting.

Mounting Position: Any

Accuracy Data (Acc to IEC 60688)

Basic Accuracy: ± 0.2% of range

Reference Conditions Ambient temperature: 23 °C ± 2K

Nominal value of Aux

supply voltage: 230V 50Hz or 60 Hz AC/DC

48V 50Hz or 60 Hz AC/DC

Output burden: 0.5 * Rext max.

Influence factors:

Temperature: ± 0.15% per 10 K

Burden influence: < ±0.1 % for current output

< ±0.1 % for voltage output

Magnetic field: $< \pm 0.2 \% (400 \text{ A/T})$

Regulations

Electromagnetic Compatibility Acc. to IEC 61326-1

IEC 61000-4-3, Level 3 IEC 61000-4-4, Level 3

Shock Resistance IEC 60068-2-27,Min.

Severity 50 G

Vibration Strength IEC 60068-2-6, 10-150-10 Hz,

0.15mm,2G

Electrical standards Acc. to IEC 1010 resp. EN

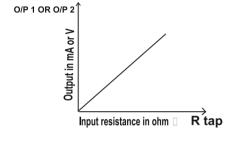
61 010

Operating voltages <300 V between all

Insulated circuits

Climatic rating Climate case 3Z acc. to VDI

/ VDE 3540


Nominal range of use: 0 °C to 45 °C (Usage Group II)

Operating temperature: $-20 \text{ to } 65 \text{ }^{\circ}\text{C}$ Storage temperature: $-40 \text{ to } 70 \text{ }^{\circ}\text{C}$

Annual mean relative humidity

< 75% standard Climatic rating.

Output characteristics rat

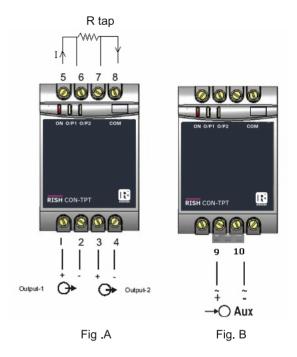


Table: Alternative connection types

Measurement Measuring Measuring Wiring diagram range limits span 0... 3700Ω/ 100... 3700Ω/ 6 two-wire connection $500...25000\Omega$ $0...25000 \Omega$ 0... 3700 Ω/ 100...370002 / Resistance Measurement ቑ፟፟፟፟፟ 500...25000Ω 6 three-wire connection $0...25000 \Omega$ Resistance Measurement four-wire connection 0... 3700 Ω/ 100...370002 / 3 6 $500...25000\Omega$ $0...25000 \Omega$ 100...370002 / $0... 3700 \Omega /$ Resistance Transmitter WF 500...25000Ω $0...25000 \Omega$ $0... 3700 \Omega$ / 100...370002 / 100% 500...25000Ω Resistance Transmitter WF DIN 5 6 7 $0...25000 \Omega$

Connection Diagram

Fig A shows Input and output connections. Where as Fig B shows Auxiliary power supply to beConnections.

Ordering Information

PRODUCT NAME- INPUT RANGE CODE-DISPLAY-OUTPUT1 RANGE CODE- OUTPUT2 RANGE CODE AUXILLARY SUPPLY

1) Product Kmat :- CT25-

2) Standard input range codes:-

Input resistance (Κ Ω)	Ordering Code
025	R4
020	R3
018	R2
017	R1

3) Tap Position Indicator Display

Display Ordering	Code
With Display	D
Without Display	Z

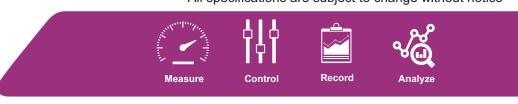
4) Standard output1 range codes:-

Current	Ordering	Voltage	Ordering
(mA)	Code	(V)	Code
020	32	010	5H
420	55	210	3C

5) Standard output2 range codes :-

Current	Ordering	Voltage	Ordering
(mA)	Code	(V)	Code
020	32	010	5H
420	55	210	3C

6) Auxiliary supply voltage


Auxiliary supply	Ordering Code
60300V AC/DC	Н
2460V AC/DC	F

Example:-

To order model of 0 to 25 K Ω input , with Tap Position indicator Display, output1 0 to 10V , output2 4 to 20 mA and auxiliary supply 24 to 60 V AC DC, ordering information will be as follow :- CT25-R1-D-5H-55-F

All specifications are subject to change without notice

RISHABH INSTRUMENTS LIMITED