
X20CMR010

Data sheet V1.04 1

X20CMR010

1 Order data
Model number Short description Figure

Other functions
X20CMR010 X20 cabinet monitoring module, integrated temperature and hu-

midity sensor, production data acquisition, 512 kB flash memory
for user data
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O supply continuous
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20CMR010 - Order data

2 Module description

The module is designed for measuring ambient conditions in the control cabinet as well as recording operating
hours and power-on cycles. In addition, the module offers the option of storing user data directly on the module
and supports blackout mode.
Functions:

• "Measuring and evaluating ambient conditions"
• "Recording operating data"
• "Internal module memory for user data"
• "Blackout mode"

Measuring and evaluating ambient conditions

The ambient conditions are continuously evaluated by the module. The duration in which individual parameters are
within certain ranges is stored internally. This makes it possible, for example, to determine how long the system
remained in a certain temperature range. The histograms recorded by the module can be read out by the user.

Internal module memory for user data

With 512 kB nonvolatile user memory (flash), data from the application can be saved directly on the module and also
read back from the module. The data is therefore retained after the module or CPU is restarted and remains with
the module in the event that the module is connected to another machine or system, for example. Data retention
is maintenance-free – without batteries.

Information:
It is important to note that the internal module memory is not available in function model "Bus con-
troller"!

Blackout mode

The integrated blackout mode ensures that module functionality is maintained even in the event of network failure.

X20CMR010

2 Data sheet V1.04

3 Technical data
Model number X20CMR010
Short description
I/O module Measurement of ambient conditions:

Internal module temperature, relative humidity, operating hours, power-on cycles
General information
B&R ID code 0xF1AC
Status indicators Memory access, operating state, module status
Diagnostics

Module run/error Yes, using status LED and software
Blackout mode

Scope Module
Function Module function
Standalone mode No

Power consumption
Bus 0.4 W
Internal I/O -

Additional power dissipation caused by actuators
(resistive) [W]

-

Application memory
Type 512 kB flash memory
Sectors 8 sectors, 64 kB each
Data retention 20 years at 55°C
Guaranteed erase/write cycles 100,000 per sector
Error-correcting code (ECC) No
Write protection No

Certifications
CE Yes

Temperature and humidity sensor
Sensor position Module-internal
Sampling rate 1 s
Temperature measurement

Measurement range -25 to 125°C
Resolution 0.1°C/LSB
Max. error ±0.3°C

Humidity measurement
Measurement range 5 to 95%
Resolution 1%/LSB
Max. error ±2% at 10 to 80% relative humidity

±3% at <10 and >80% relative humidity
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating -
Storage -40 to 85°C
Transport -40 to 85°C

Relative humidity
Operation 5 to 95%, non-condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20TB12 separately.

Order 1x bus module X20BM11 separately
Spacing 12.5 +0.2 mm

Table 2: X20CMR010 - Technical data

X20CMR010

Data sheet V1.04 3

4 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" of the
X20 system user's manual.

Figure LED Color Status Description
Off No power to module
Single flash Mode RESET
Double flash Blackout mode active
Blinking Mode PREOPERATIONAL

r Green

On Mode RUN
e Red Off Module not supplied with power or everything OK
e + r Solid red / Single green flash Invalid firmware

Off No data is being read from internal memory.R Green
On The user is reading data from internal memory.
Off No data is being written to internal memory.W Yellow
On The user is writing data to internal memory.

5 Pinout

X2
0

C
M

 R
01

0 r e

R W

X20CMR010

4 Data sheet V1.04

6 Function description

6.1 Measuring and evaluating ambient conditions

The module is equipped with internal sensors to collect the following conditions:

• Relative humidity [%]
• Ambient temperature [°C]

Information:
The sampling rate is 1 s.

Since the sensor for relative humidity and ambient temperature is located directly in the module, the measured
values depend on the intrinsic heating of the module and the heat radiated by neighboring modules.
The effect of this warming on the measured values can be circumvented by using an external temperature sensor on
another module. The value measured with the external temperature sensor is used as a reference. With this value,
the relative humidity at the position of the external temperature sensor is calculated using the Magnus formula.

Example
The following example calculates the relative humidity at the position of the external temperature sensor using
the Magnus formula.

• Relative humidity in module: 20%
• Ambient temperature in module: 40°C
• External temperature sensor: 35°C

Module

External temperature sensor

In this example, a deviation of the relative humidity of approx. 6% results between the measured value in the
module and the calculated value at the position of the external temperature sensor.

X20CMR010

Data sheet V1.04 5

6.1.1 Additional information

The ambient conditions are recorded and evaluated in the module. The following values can be read:

• Smallest value occurred
• Largest value occurred

Information:
The values are saved to module-internal FRAM.
If needed, the values can be reset.
The registers are described in section "Additional information" on page 14.

6.1.2 Histogram for relative humidity

A histogram for relative humidity is recorded in the module. The measuring range for the relative humidity is divided
into 10 areas:

Area Relative humidity Register
1 0 to <10% RelHumHist01Entry

RelHumHist01Time
2 10 to <20% RelHumHist02Entry

RelHumHist02Time
3 20 to <30% RelHumHist03Entry

RelHumHist03Time
4 30 to <40% RelHumHist04Entry

RelHumHist04Time
5 40 to <50% RelHumHist05Entry

RelHumHist05Time
6 50 to <60% RelHumHist06Entry

RelHumHist06Time
7 60 to <70% RelHumHist07Entry

RelHumHist07Time
8 70 to <80% RelHumHist08Entry

RelHumHist08Time
9 80 to <90% RelHumHist09Entry

RelHumHist09Time
10 90 to 100% RelHumHist10Entry

RelHumHist10Time

As soon as the relative humidity reaches one of the predefined areas, a delay time of 3 s begins. Once the delay
time has expired, the entry counter is increased by 1 and the dwell time begins. The delay time prevents the counter
from constantly being incremented in the crossover area.

Information:
The values are saved to module-internal FRAM.
If needed, the registers can be reset.
The registers are described in section "Relative humidity" on page 15.

X20CMR010

6 Data sheet V1.04

6.1.3 Histogram for ambient temperature

A histogram for ambient temperature is recorded in the module. The measuring range for the ambient temperature
is divided into 12 areas:

Area Ambient temperature Register
1 <-20°C TempHist01Entry

TempHist01Time
2 -20 to <-10°C TempHist02Entry

TempHist02Time
3 -10 to <0°C TempHist03Entry

TempHist03Time
4 0 to <10°C TempHist04Entry

TempHist04Time
5 10 to <20°C TempHist05Entry

TempHist05Time
6 20 to <30°C TempHist06Entry

TempHist06Time
7 30 to <40°C TempHist07Entry

TempHist07Time
8 40 to <50°C TempHist08Entry

TempHist08Time
9 50 to <60°C TempHist09Entry

TempHist09Time
10 60 to <70°C TempHist10Entry

TempHist10Time
11 70 to <80°C TempHist11Entry

TempHist11Time
12 ≥80°C TempHist12Entry

TempHist12Time

As soon as the ambient temperature reaches one of the predefined areas, a delay time of 3 s begins. Once the
delay time has expired, the entry counter is increased by 1 and the dwell time begins. The delay time prevents the
counter from constantly being incremented in the crossover area.

Information:
The values are saved to module-internal FRAM.
If needed, the registers can be reset.
The registers are described in section "Ambient temperature" on page 15.

6.2 Recording operating data

The following operating data is collected by the module:

• Operating time with active connection to network master
• Operating time without active connection to network master (blackout mode)
• Total operating time
• Number of power-on cycles

Information:
The values are saved to module-internal FRAM.
If needed, the operating data can be reset.
The registers are described in section "Operating data" on page 14.

X20CMR010

Data sheet V1.04 7

6.3 Internal module memory for user data

6.3.1 General information

The module is equipped with 512 kB nonvolatile internal flash memory that can be used by the application. Data
can be saved directly to the module and then read back. This makes it possible to store recipe data or production
information about the machine on the module, for example.

6.3.2 Operation

The module's memory interface is based on Flatstream communication. Operation takes place using library
"AsFltGen".

Information:
For more information about library "AsFltGen", see Automation Help.

Information:
The following points must be observed:

• Up to 256 bytes can be read or written per read or write command. These 256 bytes represent a
page. If more than 256 bytes must be read or written, then a consecutive sequence of commands
and memory management must be implemented in the application.

• The erase command is based on sectors. One sector is 64 kB. This corresponds to 256 pages.
The entire sector containing the specified address is erased. The flash memory is divided into
a total of 8 sectors (8 x 64 kB = 512 kB).

• In order to overwrite data, the corresponding sector must first be erased. Only then can the
new data be saved.

• Memory can be arranged as needed. A separate sector should be used for data that is overwrit-
ten regularly.

6.3.3 Commands

6.3.3.1 Protocol

A header precedes each command. The data follows the header and depends on the command.

Header Data

6.3.3.2 Header

Each request or response begins with a 16-byte header. The following elements must be defined in the header:
Element Data type Activity Description

Requirement Defines the command:
"r" ... Read data (ASCII code 0x72)
"w" ... Write data (ASCII code 0x77)
"e" ... Erase data (ASCII code 0x65)

Code USINT

Response The command code contained in the request is sent back.
Requirement Unrestricted use. The consecutive number is important, for example, if more than 256 bytes

must be read or written. In this case, the user must implement a sequential series of com-
mands and memory management in the application.

Consecutive number USINT

Response The number contained in the request is sent back.
Requirement Not used: The byte is not evaluated.Status UINT
Response Status response:

0x0000 ... Command executed successfully
0x8001 ... Invalid: General fault
0x8002 ... Invalid address
0x8003 ... Invalid size
0x8004 ... Flash memory busy
0x8006 ... Flash memory timeout

Requirement Starting address from which data should be read or written.Address UDINT
Response The starting address contained in the request is sent back.
Requirement Size of the data to be read or written.Data size UDINT
Response The data size contained in the request is sent back.

Reserve UDINT Reserved

X20CMR010

8 Data sheet V1.04

6.3.3.3 Write data

Action Description
Requirement In order to save data to the module, the header must be prepared for communication. The data is appended directly to the header. The

header and data must be specified to function block "fltWrite" as a transmit buffer.

Header Data

Response The module's response – the returned header – is stored in the receive buffer using function block "fltRead" and can be evaluated by
the application.

Header

6.3.3.4 Read data

Action Description
Requirement In order to read data from the module, the header must be prepared for communication. The header must be specified to function block

"fltWrite" as a transmit buffer.

Header

Response The module's response – the returned header and data – is stored in the receive buffer using function block "fltRead" and can be evaluated
by the application.

Header Data

6.3.3.5 Erasing a sector

Action Description
Requirement In order to erase an area of the module's flash memory, the header must be prepared for communication. The entire 64 kB sector containing

the specified address is erased. The header must be specified to function block "fltWrite" as a transmit buffer.

Header

Response The module's response – the returned header – is stored in the receive buffer using function block "fltRead" and can be evaluated by
the application.

Header

6.4 Blackout mode

Blackout mode allows users to continue execution of the application in lower-level subsystems if components of
the B&R system fail. In this way, the B&R system – independently of redundancy technology – makes it possible
to respond to system-critical situations based on the specific application.
The use of blackout-capable modules is recommended for the following requirements:

• Exit routines on system failure, e.g. to enable the opening of a press if the system fails.
• Holding or controlled setting of an output on system failure, e.g. to automatically close inflow valves.
• Deceleration sequences on system failure, e.g. to reduce motor speeds before transmitting a stop com-

mand.

If blackout-capable modules are configured accordingly, blackout mode will be carried out if the network connection
to the higher-level controller or CPU is interrupted.
As soon as the network disturbance has been corrected, blackout mode is stopped by the modules and bumpless
synchronization with the network takes place.
Requirements for operation
The following requirements must be met in order to use blackout mode:

• The module being used must support blackout mode.
• Parameter "Blackout mode" must be enabled in Automation Studio.

X20CMR010

Data sheet V1.04 9

6.4.1 Areas of use

Through the use of blackout-capable modules, a part of the control system can also remain functional if a distur-
bance in the network or X2X Link connection between the modules occurs.

6.4.1.1 Loss of POWERLINK connection

Initial situation
Several stations in an application are connected to the CPU via network cables. A fault occurs that interrupts data
transfer between the CPU and stations.
Effect
Non-blackout modules are reset and operated according to their default characteristics.
Blackout-capable modules display the following behavior:

• The programmed function continues to be executed.
• Subordinate networks continue to work.
• Data from the CPU is initialized with "0".
• After the error has been corrected, the module bumplessly returns to the higher-level network.

Warning!
Blackout mode causes data from the CPU to be initialized with "0". If blackout mode is used in combi-
nation with "output inversion", this can lead to the unwanted setting of outputs.

Blackout-capable modules

Standard modules

X20CMR010

10 Data sheet V1.04

6.4.1.2 Loss of X2X Link connection

Initial situation
Modules in an application are connected to the network via X2X Link cables. A defect in the X2X Link cable causes
the data transfer between the CPU and modules to be interrupted.
Effect
Non-blackout modules are reset and operated according to their default characteristics.
Blackout-capable modules display the following behavior:

• The programmed function continues to be executed.
• Subordinate networks continue to work.
• Data from the CPU is initialized with "0".
• After the error has been corrected, the module bumplessly returns to the higher-level network.

Warning!
Blackout mode causes data from the CPU to be initialized with "0". If blackout mode is used in combi-
nation with "output inversion", this can lead to the unwanted setting of outputs.

Blackout-capable modules

Standard modules

6.4.2 Programming blackout mode

Blackout mode cannot be detected by the blackout-capable modules themselves. If it is necessary to program
specific blackout behavior in an application, an indirect method must therefore be chosen.
One possibility is to implement a counter in the blackout-capable module's higher-level CPU and query it cyclically.
Blackout mode would make itself noticeable in this case by a counter value that no longer changes or a counter
value of zero.
Blackout-capable modules can be divided into 2 categories:

• Programmable modules
The blackout function is programmed using existing function blocks. In other words, the existing technolo-
gies for application programming or reACTION Technology are used.
The blackout function is executed largely independently of other system components.

• Standard function modules
These modules are not programmable and maintain their default behavior in blackout mode.

X20CMR010

Data sheet V1.04 11

7 Register description

7.1 Using this module with SGC target systems

Information:
It is not possible to use the module with SGC target systems.

7.2 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" of the X20 system user's
manual.

7.3 Function model 0 - Standard

Read WriteRegister Description Data type
Cyclic Acyclic Cyclic Acyclic

Module - Control
Reset additional information and data point histograms UINT
ClrStatistics_OperatingData Bit 0
ClrStatistics_RelHumidity Bit 1

134

ClrStatistics_Temperature Bit 2

●

Measured values
2 RelHumidity INT ●
6 Temperature INT ●

Additional information
4100 OnTimeConnected UDINT ●
4108 OnTimeDisconnected UDINT ●
4116 OnTimeCombined UDINT ●
4124 PowerCycles UDINT ●
4134 RelHumidityMin INT ●
4138 RelHumidityMax INT ●
4150 TemperatureMin INT ●
4154 TemperatureMax INT ●

Data point histogram
4244 + N*16 RelHumHist0NEntry (index N = 1 to 10) UDINT ●
4252 + N*16 RelHumHist0NTime (index N = 1 to 10) UDINT ●
4404 + N*16 TempHist0NEntry (index N = 1 to 12) UDINT ●
4412 + N*16 TempHist0NTime (index N = 1 to 12) UDINT ●

Flatstream - Configuration (access to internal flash memory)
513 OutputMTU USINT ●
515 InputMTU USINT ●
517 FlatstreamMode USINT ●
519 Forward USINT ●
522 ForwardDelay UINT ●

Flatstream - Communication (access to internal flash memory)
577 InputSequence USINT ●

577 + N*2 RxByteN (index N = 1 to 27) USINT ●
641 OutputSequence USINT ●

641 + N*2 TxByteN (index N = 1 to 15) USINT ●

X20CMR010

12 Data sheet V1.04

7.4 Function model 254 - Bus controller

Read WriteRegister Offset1) Description Data type
Cyclic Acyclic Cyclic Acyclic

Module - Control
Reset additional information and data point
histograms

UINT

ClrStatistics_OperatingData Bit 0
ClrStatistics_RelHumidity Bit 1

134 -

ClrStatistics_Temperature Bit 2

●

Measured values
2 0 RelHumidity INT ●
6 2 Temperature INT ●

Additional information
4100 - OnTimeConnected UDINT ●
4108 - OnTimeDisconnected UDINT ●
4116 - OnTimeCombined UDINT ●
4124 - PowerCycles UDINT ●
4134 - RelHumidityMin INT ●
4138 - RelHumidityMax INT ●
4150 - TemperatureMin INT ●
4154 - TemperatureMax INT ●

Data point histogram
4244 + N*16 - RelHumHist0NEntry (index N = 1 to 10) UDINT ●
4252 + N*16 - RelHumHist0NTime (index N = 1 to 10) UDINT ●
4404 + N*16 - TempHist0NEntry (index N = 1 to 12) UDINT ●
4412 + N*16 - TempHist0NTime (index N = 1 to 12) UDINT ●

1) The offset specifies the position of the register within the CAN object.

7.4.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use additional registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" of the X20
user's manual (version 3.50 or later).

7.4.2 CAN I/O bus controller

The module occupies 1 analog logical slot on CAN I/O.

X20CMR010

Data sheet V1.04 13

7.5 Controller

7.5.1 Reset additional information and data point histograms

Name:
ClrStatistics_OperatingData
ClrStatistics_RelHumidity
ClrStatistics_Temperature
Setting the respective bit in the register resets operating data, information and histograms. Procedure:

• Set the bit for resetting the desired data
• The bit must remain set until the registers have been reset
• As soon as the user has determined that the data has been reset, then the bit for resetting the data can

be deleted
• If the bit for resetting the data is not deleted, the data will be permanently set to 0

Information:
It can take up to 1 s until the delete operation for the data is executed.

Data type Values
UINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Do not reset0 ClrStatistics_OperatingData
Reset operating data 1 Reset

0 Do not reset1 ClrStatistics_RelHumidity
Resets information and histograms for relative humidity 1 Reset

0 Do not reset2 ClrStatistics_Temperature
Resets information and histograms for ambient temperature 1 Reset

3 - 15 Reserved 0

7.6 Measured values

7.6.1 Relative humidity

Name:
RelHumidity
An internal sensor measures the relative humidity in the area.
Data type Values Information
INT 0 to 100 Relative humidity [%], resolution 1%

7.6.2 Ambient temperature

Name:
Temperature
An internal sensor measures the ambient temperature.
Data type Values Information
INT -250 to 1250 Ambient temperature [°C], resolution 0.1°C

X20CMR010

14 Data sheet V1.04

7.7 Additional information

Information:
The following points must be observed:

• Data recorded on the module is saved in intervals of 10 s.
• When reseting the values, it can take up to 1 s until the delete operation is executed (see register

"ClrStatistics" on page 13).

7.7.1 Operating data

Name:
OnTimeConnected
OnTimeDisconnected
OnTimeCombined
PowerCycles
The respective operating data is output in these registers. If needed, the values can be reset using register "ClrS-
tatistics" on page 13.
Register Data type Values Information
OnTimeConnected UDINT 0 to 4,294,967,295 Operating time during which the module was actively connected

to the network master [s], resolution 1 s
OnTimeDisconnected UDINT 0 to 4,294,967,295 Operating time during which the module was not actively con-

nected to the network master [s] (blackout mode), resolution 1 s
OnTimeCombined UDINT 0 to 4,294,967,295 Total operating time of the module [s], resolution 1 s
PowerCycles UDINT 0 to 4,294,967,295 Number of power-on cycles

7.7.2 Relative humidity

Name:
RelHumidityMin
RelHumidityMax
Information about the relative humidity is output in these registers. The sampling interval is 1 s. If needed, the
values can be reset using register "ClrStatistics" on page 13.
Register Data type Values Information
RelHumidityMin INT 0 to 100 Smallest value that occurred [%], resolution 1%
RelHumidityMax INT 0 to 100 Largest value that occurred [%], resolution 1%

7.7.3 Ambient temperature

Name:
TemperatureMin
TemperatureMax
Information about the ambient temperature is output in these registers. The sampling interval is 1 s. If needed, the
values can be reset using register "ClrStatistics" on page 13.
Register Data type Values Information
TemperatureMin INT -250 to 1250 Smallest value that occurred [°C], resolution 0.1°C
TemperatureMax INT -250 to 1250 Smallest value that occurred [°C], resolution 0.1°C

X20CMR010

Data sheet V1.04 15

7.8 Data point histogram

7.8.1 Relative humidity

Name:
RelHumHist01Entry to RelHumHist10Entry
RelHumHist01Time to RelHumHist10Time
The relative humidity histogram data recorded on the module is displayed on these registers. If needed, the values
can be reset using register "ClrStatistics" on page 13.
Register Data type Values Information
RelHumHist01Entry to
RelHumHist10Entry

UDINT 0 to 4,294,967,295 Entry counter for the corresponding area

RelHumHist01Time to
RelHumHist10Time

UDINT 0 to 4,294,967,295 Dwell time in corresponding area [s], resolution 1 s

7.8.2 Ambient temperature

Name:
TempHist01Entry to TempHist12Entry
TempHist01Time to TempHist12Time
The ambient temperature histogram data recorded on the module is displayed on these registers. If needed, the
values can be reset using register "ClrStatistics" on page 13.
Register Data type Values Information
TempHist01Entry to
TempHist12Entry

UDINT 0 to 4,294,967,295 Entry counter for the corresponding area

TempHist01Time to
TempHist12Time

UDINT 0 to 4,294,967,295 Dwell time in corresponding area [s], resolution 1 s

X20CMR010

16 Data sheet V1.04

7.9 Flatstream communication

7.9.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

X20CMR010

Data sheet V1.04 17

7.9.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

X20CMR010

18 Data sheet V1.04

7.9.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages once they have been completely transferred.

X20CMR010

Data sheet V1.04 19

7.9.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

7.9.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

7.9.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

X20CMR010

20 Data sheet V1.04

7.9.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

7.9.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

7.9.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

7.9.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Description Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 of the control byte.

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is to be expected. This information is especially important
when using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.

X20CMR010

Data sheet V1.04 21

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

7.9.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

X20CMR010

22 Data sheet V1.04

7.9.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

X20CMR010

Data sheet V1.04 23

7.9.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

X20CMR010

24 Data sheet V1.04

7.9.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

X20CMR010

Data sheet V1.04 25

7.9.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

X20CMR010

26 Data sheet V1.04

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

X20CMR010

Data sheet V1.04 27

7.9.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ The OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

X20CMR010

28 Data sheet V1.04

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flow chart

SynchronizationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

Copy next sequence to MTU
Increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter?

OutputSequenceAck = 0?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter?

More sequences to be sent?

diff = 0?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flow chart for the output direction

X20CMR010

Data sheet V1.04 29

7.9.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data does not change in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

X20CMR010

30 Data sheet V1.04

General flow chart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

iz
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1? InputSequenceAck > 0?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1?

MTU_Offset = 0

RemainingSegmentSize = 0?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size - MTU_Offset)?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0?

InputMTU_Size = MTU_Offset?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0?

► InputSequenceAck =
InputSequenceCounter

► Mark frame as complete

InputSyncBit = 1?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

Copy segment data, e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flow chart for the input direction

X20CMR010

Data sheet V1.04 31

7.9.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again once the channel has been
resynchronized.

X20CMR010

32 Data sheet V1.04

7.9.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Description Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

X20CMR010

Data sheet V1.04 33

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

X20CMR010

34 Data sheet V1.04

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

X20CMR010

Data sheet V1.04 35

7.9.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

X20CMR010

36 Data sheet V1.04

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

X20CMR010

Data sheet V1.04 37

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

X20CMR010

38 Data sheet V1.04

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

X20CMR010

Data sheet V1.04 39

7.9.5 Example of Forward functionality on X2X Link

Forward functionality is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

7.9.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array
Adjust SequenceAck

Cyclic matching of
MTU and module buffer

Check SequenceAck

Resource Sender
(task to transmit)

Bus system
(direction 1)

Recipient
(task to receive)

Bus system
(direction 2)

Sender
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

X20CMR010

40 Data sheet V1.04

7.9.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

7.9.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

7.9.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in µs. This is the amount of time the module has to
wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle. The
program routine for receiving sequences from a module can therefore be run in a task class whose cycle time is
slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

X20CMR010

Data sheet V1.04 41

7.9.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

X20CMR010

42 Data sheet V1.04

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

X20CMR010

Data sheet V1.04 43

7.9.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

X20CMR010

44 Data sheet V1.04

7.10 Minimum cycle time

The minimum cycle time specifies the time up to which the bus cycle can be reduced without communication
errors occurring. It is important to note that very fast cycles reduce the idle time available for handling monitoring,
diagnostics and acyclic commands.

Minimum cycle time
200 µs

7.11 Minimum I/O update time

The minimum I/O update time defines how far the bus cycle can be reduced while still allowing an I/O update to
take place in each cycle.

Minimum I/O update time
Temperature and relative humidity 1 s
User flash Flatstream communication <10 ms

	X20CMR010
	1 Order data
	2 Module description
	3 Technical data
	4 LED status indicators
	5 Pinout
	6 Function description
	6.1 Measuring and evaluating ambient conditions
	6.1.1 Additional information
	6.1.2 Histogram for relative humidity
	6.1.3 Histogram for ambient temperature

	6.2 Recording operating data
	6.3 Internal module memory for user data
	6.3.1 General information
	6.3.2 Operation
	6.3.3 Commands
	6.3.3.1 Protocol
	6.3.3.2 Header
	6.3.3.3 Write data
	6.3.3.4 Read data
	6.3.3.5 Erasing a sector

	6.4 Blackout mode
	6.4.1 Areas of use
	6.4.1.1 Loss of POWERLINK connection
	6.4.1.2 Loss of X2X Link connection

	6.4.2 Programming blackout mode

	7 Register description
	7.1 Using this module with SGC target systems
	7.2 General data points
	7.3 Function model 0 - Standard
	7.4 Function model 254 - Bus controller
	7.4.1 Using the module on the bus controller
	7.4.2 CAN I/O bus controller

	7.5 Controller
	7.5.1 Reset additional information and data point histograms

	7.6 Measured values
	7.6.1 Relative humidity
	7.6.2 Ambient temperature

	7.7 Additional information
	7.7.1 Operating data
	7.7.2 Relative humidity
	7.7.3 Ambient temperature

	7.8 Data point histogram
	7.8.1 Relative humidity
	7.8.2 Ambient temperature

	7.9 Flatstream communication
	7.9.1 Introduction
	7.9.2 Message, segment, sequence, MTU
	7.9.3 The Flatstream principle
	7.9.4 Registers for Flatstream mode
	7.9.4.1 Flatstream configuration
	7.9.4.1.1 Number of enabled Tx and Rx bytes

	7.9.4.2 Flatstream operation
	7.9.4.2.1 Format of input and output bytes
	7.9.4.2.2 Transport of payload data and control bytes
	7.9.4.2.3 Control bytes
	7.9.4.2.4 Communication status of the CPU
	7.9.4.2.5 Communication status of the module
	7.9.4.2.6 Relationship between OutputSequence and InputSequence

	7.9.4.3 Synchronization
	7.9.4.4 Transmitting and receiving
	7.9.4.5 Transmitting data to a module (output)
	7.9.4.6 Receiving data from a module (input)
	7.9.4.7 Details
	7.9.4.8 Flatstream mode
	7.9.4.9 Adjusting the Flatstream

	7.9.5 Example of Forward functionality on X2X Link
	7.9.5.1 Function principle
	7.9.5.2 Configuration
	7.9.5.2.1 Number of unacknowledged sequences
	7.9.5.2.2 Delay time

	7.9.5.3 Transmitting and receiving with Forward
	7.9.5.4 Errors when using Forward

	7.10 Minimum cycle time
	7.11 Minimum I/O update time

